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Thermal stress generated during a thermal shock is closely related to the fracture of 
ceramics. An attempt has been made to obtain thermal stress in a specimen by numerical 
calculation. The temperature dependence of thermal conductivity and diffusivity were 
introduced to realize the practical thermal conditions. The maximum thermal stress, * (3"max, 
was recognized at the Fourier number, but differed from the temperature dependence. 
Correlative equations of C~*max and q~ax with the Blot number, 13i, under cooling or heating 
tests, have been proposed. These equations resulted in the exact (~*max and qr~ax compared 
with the previous equations, in which temperature dependence was ignored. The thermal 
shock resistance parameter was expressed by the correlative equations of (~ax in order to 
suggest adequate experimental conditions and specimen size. A comparison of the 
measured and calculated time to failure of the specimen led to confirmation of the fracture 
criterion. The measured time disagreed with the calculated one, if the fracture by thermal 
shocking was not predominant. The correlative equations were also useful to select the kind 
of ceramics subjected to thermal shocking. 

1. Introduction 
Many methods have been proposed for the evaluation 
of thermal shock resistance of ceramics. The water- 
quenching method has been widely used in industry. 
In this method, the heated specimen is immersed in 
water and the residual strength is measured to define 
the critical temperature difference, A0o. On the other 
hand, for the rapid heating method, the decrease of 
strength is estimated by heating the specimen partially 
with infrared radiation, etc. However, the temperature 
dependence of thermal properties of ceramics has been 
ignored in these methods when calculating the ther- 
mal stress of the specimens. 

In general, thermal conductivity and specific heat 
are significantly different for ceramics and change 
easily with temperature. These thermal properties 
greatly affect any evaluation by the thermal shock test. 
However, it is difficult to evaluate the thermal shock 
resistance of different ceramics with specimens of the 
same size because of the difference in their thermal 
properties. For example, a large specimen is needed 
for ceramics with large thermal conductivity. Sec- 
ondly, ceramics subjected to a thermal shock are de- 
stroyed partially or entirely when maximum thermal 
stress is generated in them. However, the elastic strain 
energy remaining after the thermal shock test also 
affects the fracture of ceramics, prolonging the time to 
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failure. Therefore, it is desirable to measure the time of 
fracture in thermal shock tests. 

Many analyses of maximum thermal stress have 
been performed assuming constant thermal properties 
throughout the experiment. In the previous paper [1], 
the temperature dependence of thermal conductivity 
was found to contribute more to the maximum ther- 
mal stress during the thermal shock test. However, 
thermal diffusivity is also considered to affect the 
maximum thermal stress and Fourier number. This 
factor has not thus far been reported in the literature. 

In the present work, thermal stress in an infinite 
plate was calculated numerically, by considering the 
temperature dependence of thermal conductivity and 
thermal diffusivity. Then, correlative equations of the 
maximum thermal stress and Fourier number were 
proposed as a non-linear function of the Biot number. 
A suitable size of specimens for the thermal shock test 
was suggested by using these equations. These numer- 
ical results are important as guidelines to estimate the 
exact thermal shock resistance and to select suitable 
ceramics for specific conditions. 

2. Numerical method 
Thermal stress and other parameters were easily 
obtained experimentally by the water-quench test, 
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supposing the heat conduction to be a one-dimen- 
sional problem [2]. Therefore, a numerical analysis 
was performed under the same condition for an actual 
thermal shock test, where thermal stress was gener- 
ated in an infinite plate by the rapid heating or cooling 
of both surfaces. In this case, the following thermal 
conduction equation is given with the initial and 
boundary conditions 

a/at[~z*(aT/ar = aT/avi, (1) 

T = 0 at r h = 0 (2) 

aT/a  t = 0 at t = 0 (3) 

++ aT~at = ~i(T - -  1)/)~* at t = 1 (4) 

Non-dimensional thermal conductivity, )~*, and 
thermal diffusivity, ~c*, in the above equations were 
expressed as a function of temperature, 0. 

)~* = X/X i = 1 + A T  (5) 

~* = ~/Ki = 1 + B T  (6) 

where T is the non-dimensional temperature shown as 
(0 - 0i)/(0f - 0i) with temperature, 0. The non-dimen- 
sional length, t, is x/I, where x is the length from the 
centre and 1 is one-half the infinite plate thickness; rl is 
the Fourier number shown as ~ct/l 2 and [3~ is the Biot 
number shown as hI/)~, where t is time and h is heat- 
transfer coefficient; ~: is defined as )~/pCp, where 9 is 
density and Cp is specific heat; and the subscripts i and 
f are the initial and final condition, respectively. 

The coefficients A and B in Equations 5 and 6 are 
the coefficients of temperature dependence, denoted as 
temperature constants in this study. The non-dimen- 
sional thermal diffusivity, ~c*, was used instead of 
specific heat, Cp, for the following reasons. Thermal 
diffusivity is defined and expressed by thermal 
conductivity and specific heat. Thermal diffusivity is 
used in Equation 1 and numerical calculation 
becomes easy and simple using ~c*. 

Equations 1-4 were rearranged to obtain the ap- 
proximate thermal stress by the difference method, 
using the single-valued function of temperature F, 
F = ~ ~:* d r  proposed by Goodman [3]. The follow- 
ing equations were thus obtained 

a/at[~*(aF/ar  = aF/a~]i (7) 

F = 0 at vii = 0 (8) 

aF/a t = 0 at t = 0 (9) 

++_aF/~ = [3~Ff[~;*/)~*] at ~, = 1 (10) 

Where Ff = l/B[1 + (1 + 2BF) 1/2] - 1. The details 
are given in the Appendix. The partial differential 
equation of Equation 7 was solved numerically by the 
Crank-Nicolson (implicit) method [4]. In this calcu- 
lation process, the approximate difference equation of 
time and that of conditions were applied to the left 
side and right side of each equation, respectively. 
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Compared with the previous (explicit) method [1], 
high secondary accuracy of time, stable calculation 
and a relatively small amount of calculation were the 
advantages of this method. 

The temperature distribution of the specimen with 
time was calculated under constant ]3, and temper- 
ature coefficients A and B. The mean temperature 
along the thickness of the infinite plate, T . . . . .  was 
given by j,T 

T . . . .  = T ( ~ )  dE (11)  
o 

Thermal stress under a given Fourier number, VI, can 
be calculated as follows [5] 

o - * ( r  = V . . . .  - V ( t )  ( 1 2 )  

where o-* is the non-dimensional thermal stress shown 
as O-f/[~EA0], o-f is fracture strength, ~ is thermal 
expansion coefficient, E is Young's modulus, and A0, 
the absolute value of Of - 01, is the temperature differ- 
ence in the thermal shock test. The maximum tensile 
stress is generated at t = 0 (surface of the specimen) 
for rapid heating and at ~ = 1 (centre of specimen) for 
rapid cooling, respectively. The curve of o-* with VI has 

* is a maximum, so the maximum thermal stress o-max 
judged from the positive or negative ( o - * -  o-*-1) 
value. The subscript n indicates the nth value divided 
by the Fourier number, VI- Fourier number at max- 
imum thermal stress is expressed as rlmax. 

3. Correlative equations 
3.1. Correlative equation of maximum 

thermal stress, C~ax 
Maximum thermal stress, * (7 . . . .  was calculated by the 
above method, where the temperature coefficients 
of thermal conductivity and thermal diffusivity were 
used. From the numerical results, the relation between 
1/o-*ax and 1/13 i w a s  not expressed as the following 
linear function [6] 

l/a-*max = a -}- b / ~  i (13) 

Therefore, a corrective term was introduced on the 
right-hand side of the equation 

1/o-*ax = as + bs/[3i + ( 1 -  as)exp(cs/[3i + ds) 

(14) 

on rapid cooling 

1/o-*ax = es +f~/[3i +gsexp(--2/13i) (15) 

on rapid heating. 

Parameters as gs were obtained by the least squares 
method. The subscript s in Equations 14 and 15 refers 
to the parameters related to the determination of o-*ax. 
The two equations were proposed due to the different 
convex and concave curve, where a monotonic in- 
crease was observed. On rapid cooling, parameters 
as and bs depended on the temperature coefficients 
A and B; cs and ds depended only on A. On rapid 
heating, all parameters es, f~ and g~ depended on the 
temperature coefficients A and B. The numerical re- 
sults of the correlative equation of * O'ma x are given in 



TABLE 1 Correlative equations and parameters of maximum TABLE II Correlative equations and parameters of Fourier 
thermal stress number at maximum thermal stress 

Correlative equation on rapid cooling 
1/~*~ = a~ + b~/[3i + (1 - a~) exp(G/[3i + dJ 

a~ = X1 + X2 exp(X3B) X1 = 0.734 + 0.675 (A + 1) ~176 

b~ = Y1 + Y2 B + Y3 B2 

X2 = -0.135 + 0.247 (A + 1) ~ 
X3 = -- 0.378 -- 0.949 (A + 1) - ~  

Ya = 2.181 + 1.099 (A + 1) ~176 
112 = - 1.902 + 1.692 (A + 1) 0.o49 

Y3 = - 0.539 + 0.556 (A + 1) -0.024 
cs = -6.163 -- 2.213 (A + 1) -1'4s4 
ds = -0.179 -- 0.144 (A + 1) -0.749 

Correlation equation on rapid heating 
1/c~*. x = e, +f~/131 + g~exp( - 2/13i ) 

e~ = X l  + 322 e x p ( X 2 B )  X1  = - 2 .198 + 3.562 (A + 1) 0.379 

X 2 = - 0 .539 + 2.678 (A + 1) 0.500 

X3  = 0 .039 - 0 .925 (A + 1) -0"491 

fs = - B Jr- g l  q- Y2 (B + 1) -0 .4  

Y1 = 0 .550 + 2 .780 (A + 1) -0.343 

Y2 = 9.620 - 6 .639 (A + 1) -~  

g~ = Z1 + Z2exp(Z3B) Z I  = - 4 .214 + 5.264 (A + 1) -0.248 

Z z  = - 0 .777 - 1.222 (A + 1) 0.965 

Z3 = - 0 .006 - 0 .846 (A + 1) - ~  

Correlative equation on rapid cooling 
nm*ax = at  q- bt [3~ t 

at = X1A + X~(A + 1) 2.2 X1 = - 0.003 + 0.018 (B + 1) 0.776 
X2 = 0.029 -- 0.053 (B + 1) .0.308 

bt = Y I + Y 2 A + Y 3 ( A + I )  ~ Y1 = 0.819 -0 .45 t (B+1)  o.263 
Y2 = 0.385 - 0.330 (B + 1) ~176 
113 = - 0.542 + 0.391 (B + 1) ~ 

c~ = Z1 + Z21n (A + 1) Z1 = 0.336 -- 0.844 (B + 1) ~176176 
Z2 = 0.235 -- 0.030 (B + 1) -~ 

Correlative equation on rapid heating 
1/rl*,x = dt + etexp(f/[3i) 

d t = X 1  --  0.65 exp(X2A) X1 = 3.723 + 0.620 (B + 1) 0.958 

X2 = - 0.954 - 0.191 (B + 1) 2.236 

et = Y1 + Y2 exp( - 0.8A) Y1 = 0.913 + 2.399 (B + 1) o.962 
Y2 = 0.696 + 0.808 (B + 1) 0.529 

f = Z1 - 5(A + 1) 22 Z1 = 3.723 + 0.620 (B + 1) 0.958 
Z 2 = - 0.954 - 0.191 (B + 1) 1237 

funct ion of t empera tu re  

Table  I. If the t empera tu re  dependence  is ignored,  that  
is A = B = 0, the p a r a m e t e r  as = 1.51 and  b~ = 3.29 at  
r ap id  cooling,  while e~ = 3.49 and  fs = 6.33 at  r ap id  
heat ing.  These values agreed  with the previous  cor-  
relat ive equa t ion  [ l ] .  

3.2. Correlative equation of the Fourier 
number, Tl*ax, at ~*ax 

M e a s u r e d  t ime to failure on the thermal  shock test 
mus t  agree wi th  tha t  ca lcu la ted  at  m a x i m u m  thermal  
stress, if the specimen is des t royed  only by the gener-  
a ted  thermal  stress. Rogers  et  al. [7] ob ta ined  experi-  
menta l ly  the d i s t r ibu t ion  of failure p robab i l i t y  as 
a funct ion of t ime to failure. In  this s tudy,  the follow- 
ing corre la t ive  equa t ions  of F o u r i e r  number ,  * r lmax ,  

were used 

* (16) qmax = at + bt[ 3ct 

on rap id  cool ing  

1/qmax -- dt + e t e x p ( f / [ 3 i )  (17) 

on rap id  heating.  

Pa rame te r s  at-ft  were ob ta ined  by the m e t h o d  of 
least  squares.  The  subscr ip t  t in Equa t ions  16 and 17 
refers to the pa rame te r s  for de t e rmina t i on  of rl*ax. All 
pa rame te r s  were dependen t  on the t empera tu re  coeffi- 
cients A and  B. The  numer ica l  corre la t ive  equa t ions  of  

Fou r i e r  number ,  rl*ax, at  (Ymax are  l isted in Table  II. 

4. Discussion 
4.1. Accuracy of temperature constants A 

and B 
S a t y m u r t h y  et al. [8] used the fol lowing a p p r o x i m a t e  
equa t ion  to express the the rmal  conduc t iv i ty  as a 

)~ = ;%/0 + ;~1 (18) 

where )~0 and  )~1 were constants .  However ,  this equa-  
t ion was only app l ied  to a r ap id  hea t ing  test, where the 
thermal  conduc t iv i ty  decreased  with  t empera tu re  in- 
crease. I t  is no t  reasonable  tha t  X* becomes  infinite at  
T = 0 in the non-d imens iona l  form. In the present  
study,  the rmal  conduc t iv i ty  and  the rmal  diffusivity 
were defined by Equa t ions  5 and  6, where these values 
could  be expressed as a l inear  funct ion of t empera tu re  
within the exper imenta l  range. These express ions  were 
earl ier  used by  K o iz umi  and  Tan iwak i  [9] to ob ta in  
the thermal  stress of the cyl indr ical  specimen in the 
cool ing  test. 

To de te rmine  the t empera tu re  coefficients f rom the 
thermal  proper t ies ,  the measured  the rmal  conduct iv-  
i ty and  diffusivity were normal i zed  as the non-d imen-  
s ional  )v* = )~/~,i, ~c* = ~:)q. These values were p lo t t ed  
with the non-d imens iona l  tempera ture ,  T, to a pp rox -  
imate  with Equa t ion  5 and  6. The s lope of  the s t ra ight  
line showed the t empera tu re  coefficient A or  B. Thus,  
the t empera tu re  coefficients A and  B often change  
with the t empera tu re  difference, A0obs, in the the rmal  
shock test. The  subscr ip t  obs indicates  the 
exper imenta l  value. A lumina  showed small  A0obs, and  
the l inear  t empera tu re  dependence  caused the 
cons tan t  values of A and  B. However ;  the difference 
between measured  and  ca lcula ted  values f rom 
E q u a t i o n  5 or  6 canno t  be ignored  for ceramics having 
a scat tered A0obs in the rmal  shock test. F o r  example ,  
silicon ni t r ide showed the large cri t ical  t empera tu re  
difference, A0c, and  a non- l inear  t empera tu re  
dependence.  I t  is no t  r easonab le  to give a t empera tu re  
coefficient t h r o u g h o u t  the exper iment .  

In  pract ice,  it  is des i rable  to ca r ry  out  the numer ica l  
ca lcula t ion  at A0ob~ near  the A0c measu red  previous ly  
by  o ther  methods .  In  the case of sca t tered  A0ob~, the 
use of a large specimen or  a curve a p p r o x i m a t i o n  
of the t empera tu re  dependence  is r ecommended .  The  
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preparation of a large specimen makes it easier to 
perform the test, so the specimen should be large to 
reduce the difference between coefficients A and B. 

4.2. E f fec t  o f  t e m p e r a t u r e  c o e f f i c i e n t s  A 
a n d  B on  t h e r m a l  s t r e s s  

4.2. 1. Rapid cooling condition 
The changes of thermal stress on the specimen surface 
with time are shown in Fig. 1 for rapid cooling. The 
curves had different temperature coefficients A and B. 
The maximum in each curve corresponded to the 
maximum thermal stress, o-re,x*, and Fourier number, 
qmax. Curve Iq indicates the thermal stress of ceramics 
having a significant temperature dependence of ther- 
mal conductivity and thermal diffusivity (A = 3, B = 5 
as typical examples). Curve IIq indicates thermal stress 
of ceramics having only temperature dependence of 
thermal diffusivity (A = 0, B = 5). The temperature 
dependence of thermal properties was not considered 
for curve IIIq, that is A = B = 0. The subscript q refers 
to the rapid cooling condition. 

Comparing the three curves, we note that the 
o-max of curve Iq was smaller than that of curve IIIq. 
The temperature gradient near the surface becomes 
less sharp because of the introduction of large 
non-dimensional thermal conductivity as the 
denominator to the equation of the boundary 
condition, Equation 4. Consequently, the specimen 
was entirely cooled in a short time. For  ceramics 
having only the temperature dependence of thermal 
diffusivity, the o-max* of curve IIq was larger than that 
for curve IIIq. As the change in temperature near the 
surface is enhanced, the temperature difference 
between the surface and inside increases, resulting in 
a large thermal stress in the specimen. 

The temperature distribution of the specimen is 
shown in Fig. 2, when the maximum thermal stress for 
curves  Iq and IIq is generated. Average temperatures, 
Tin, at maximum thermal stress and o-*,x are also 
shown schematically. The values * of T]max were 0.037 at 
curve Iq and 0.023 at curve IIq, respectively. The small 
temperature gradient near the surface is shown for the 
ceramics having both temperature dependences, that 
is for curve Iq, while a sharp temperature gradient is 
shown for the ceramics having thermal conductivity 
independent of temperature. The average temperature 
of the specimen, Tin, was hardly affected by the tem- 
perature dependence. The difference between surface 

�9 at rapid temperature and Tm corresponded to o-max 
cooling. Therefore, large o-%x was observed for the 
ceramics having the thermal conductivity independent 
of temperature. 

The Fourier number * rlmax at maximum thermal 
stress changed with the sign of temperature coeffi- 
cients A and B. When the coefficients are positive 
(i.e. increasing thermal conductivity and diffusivity 
with decreasing temperature), q*ax shifted towards the 
short-time side. The large temperature difference in 
the specimen was generated and observed for a short 
time. When the coefficients are negative, * qm~x shifted 
towards the opposite, long-time side. The O'ma x*  and 
qm,x in the specimen were affected by the temperature 
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Figure ] Changes of thermal stress on the specimen surface with 
Fourier number under rapid cooling. Specimens had different 
temperature coefficients A and B, but constant Biot number 13i = 5. 
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Figure 2 Temperature distribution of the specimen under rapid 
cooling near the maximum thermal stress. Temperature coefficients 
agree with those in Fig. 1. 

dependence of the thermal conductivity and diffu- 
sivity, but the former dependence was more predom- 
inant than the latter. 

4.2.2. Rapid heating condition 
The changes of thermal stress at the specimen centre 
with time are shown in Fig. 3 under rapid heating. The 
maximum in each curve corresponded to O'ma x*  . The 
curves had different temperature constants A and B, 
which corresponded to those under rapid cooling, but 
the sign became the opposite. The essential temper- 
ature dependence of thermal properties in curves I~, 
Ilh and IIIh agreed with that in Fig. 1, respectively. 
The subscript h indicates the rapid heating condition. 

The o-m~x* of curve Ih was larger, and that of curve lib 
was smaller, than that of curve IIIh. However, the 
difference between these values and the effects of tem- 
perature dependence of thermal properties were small 
compared with those at rapid cooling. Temperature 
distributions in the specimen at the maximum thermal 
stress for curves Ih and IIh, are shown in Fig. 4. The 

* at rapid heating decreased approximately by o - m a x  

one-half compared with that at rapid cooling. The 
fracture origin is the centre of the specimen on heating, 
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Figure 3 Changes of thermal stress on the specimen surface with 
Fourier number under rapid heating. Specimens had different 
temperature coefficients A and B, but constant Blot number [3~ = 5. 
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Figure 4 Temperature distribution of the specimen under rapid 
heating near the maximum thermal stress. Temperature coefficients 
agree with those in Fig. 3. 

but on the surface on cooling. Therefore, the difference 
between the centre temperature and the average tem- 
perature becomes small on rapid heating, resulting 
in small * The * (Tma x. rlmax on heating elongated signifi- 
cantly compared with that on cooling. The slow 
change in temperature in the centre caused this large 

] m a x  - 

The effect of the temperature dependence of thermal 
conductivity and diffusivity on the thermal shock test 
was different between the heating and cooling tests. 
Maximum thermal stress decreased on cooling, but 
increased on heating for the ceramics having the 
temperature dependence of thermal conductivity. The 
thermal shock resistance parameter on cooling or 
heating cannot be compared without considering the 
temperature dependence of thermal properties. 

4.3. A p p l i e d  c o n d i t i o n s  o f  t h e  c o r r e l a t i v e  
e q u a t i o n  

The adequate temperature coefficients, A, B, and Biot 
number, J3i, must be estimated to utilize the correlative 
equation of O'r~ax and * qmax in the applied temperature 
region. On calculation, the recommended correlative 
equations can be used for the materials having A and 
B values ranging from - 1  to 5. The applied condi- 
tions for ceramics are detailed below. 

The temperature dependence of thermal conduc- 
tivity, A, is relatively constant because of the small 
temperature difference in the rapid cooling test. Where 
the thermal diffusivity is defined to be ~: = ;L/p Cp, the 
temperature dependence of thermal diffusivity, B, con- 
tributes to those of thermal conductivity and specific 
heat. Most ceramics are considered to have A and 
B values ranging from 0 5. 

The initial temperature, 0i, indicates the heating 
temperature on cooling and the room temperature on 
heating tests, respectively. Therefore, the temperature 
coefficients A and B on heating have the opposite sign 
and reciprocal number of those on cooling. The range 
of coefficients A and B during the heating test was 
considered to be from - 1  to 0 for most ceramics. 

The range of Biot number, f3i, was considered to be 
1 ~< f3~ ~< 50 for both thermal shock tests. This number 
changes due to the thermal conduction condition be- 
tween the specimen surface and the surrounding me- 
dium (i.e. water, oil or air). However, because 131 can be 
controlled by changing the specimen size, I, the above 
range was considered to be reasonable in practice. 
A large specimen was often necessary for the thermal 
shock test. 

4.4. Cr i t i ca l  t e m p e r a t u r e  d i f f e r e n c e ,  A0c 
The thermal shock resistance of ceramics was 
frequently evaluated by the water quenching method 
in the literature, where A0c was obtained from the 
drastic decrease of strength at a given temperature 
difference. Substituting the correlative equation of 
O'ma x*  into ~max* = cyf/o~EzXOc = R/AOo, where R is 
thermal shock resistance parameter, 0c is given by 

A0o = R[a~ + bs/~i + (t - as)exp(c~/~i + d,)l 

(19) 
on rapid cooling 

A0~ = R[e~ +f~/~i + g~exp( - 2/[3i)] (20) 

on rapid heating 

The parameters a,-g~ are listed in Table I. The 
relation between A0o and [3i for the ceramics having 
a temperature dependence of thermal properties is 
shown in Fig. 5. The curves were obtained from the 
curve I n in Fig. 1 and curve Ih in Fig. 3, where the 
essential temperature dependences were the same. The 
dotted lines in the figure indicate the fracture limit 
under which ceramics were not fractured by a thermal 
shock. A significantly different A0c was observed in the 
cooling or heating test. A different ~m~x was generated 
with a different fracture origin. A rapid change of 
temperature on the surface generated large thermal 
stress on cooling, whereas a slow change in the centre 
caused low thermal stress on heating. 

For  ceramics having a temperature dependence 
of thermal properties, a sharp change of A0~ was 
observed with [3i. A remarkably different A0c was 
obtained even with a small change in test conditions. 
Therefore, several At% values must be measured by 
changing [3~, using several specimen sizes or different 
surrounding conditions. In practice, it was most 
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4. For  ceramics having a temperature dependence 
of thermal properties, a sharp change of critical tem- 
perature difference, A0o, was observed with Biot num- 
ber, ~i. A remarkably different A0o was obtained even 
with a small change in test conditions. Therefore, 
several A0~ values must be measured by changing [3i to 
evaluate the thermal shock resistance. 

5. The fracture criterion can be assumed by com- 
parison of measured and calculated time to fracture. 
If the measured time agrees with that calculated from 
the correlative equations, only thermal stress contrib- 
utes to the fracture of the ceramics. 

Figure 5 Changes of critical temperature difference with Biot 
number and each fracture limit. Curves show the rapid heating and 
cooling of the same ceramics. 

convenient to change the specimen size. A thermal 
shock test must be performed with several specimen 
sizes to obtain the exact constant R. The difference 
between A0~ obtained by cooling and heating changes 
not only with thermal conductivity and diffusivity, but 
also with the temperature dependence. Adequate 
ceramics must be selected for industrial thermal 
conditions on the basis of the above heat parameters. 

Appendix. Thermal conduction equation 
on rapid cooling or heating 
of an infinite plate 

The heat conduction equation for an infinite plate, 
which was heated or cooled uniformly on both sur- 
faces, is given with initial and boundary condi- 
tions by 

a/acEK*(aT/ar = aT/ani (A1) 

T = 0 at q~ = 0 (A2) 

aT/at  = 0 at r = 0 (A3) 

4.5. Confirmation of the thermal shock test 
The A0c and * CYmax are constants at a given condition 
and can be obtained by the thermal shock test. How- 
ever, the contribution of the elastic strain energy to 
fracture must be noted. The fracture occurred either 
by thermal stress or elastic strain energy. This fracture 
criterion must be determined by measuring time to 
failure. If the measured time to failure agrees with that 

of q . . . .  only calculated from the correlative equation * 
thermal stress contributes to the fracture of the ce- 
ramics. The fracture caused in connection with strain 
energy prolongs the time to failure. Therefore, these 
thermal shock test data must be excluded from the 
calculation. It is also important to obtain the exact 
time to failure in the experiment. 

+_aT~at = ~ i ( T -  1)/X* at r = 1 (A4) 

Non-dimensional thermal conductivity, X*, and 
thermal diffusivity, ~:*, in the above equations were 
expressed as a function of temperature, 0 

X* = X/Xi = 1 + A T  (A5) 

~c* = ~:/~:i = 1 + B T  (A6) 

where T is non-dimensional temperature shown as 
(0 - e0/(ef - oi) with temperature, 0. 

Equations A 1-4 were rearranged by the difference 
method, using a single-valued function of temperature, 
F, which was expressed below according to Goodman 

F = ~* d T  (A7) 

5. Conclusions 
The thermal stress and Fourier number were obtained 
from the numerical calculation, supposing the heat 
conduction to be a one-dimensional problem. Non- 
dimensional thermal conductivity and diffusivity were 
used as a function of temperature in the calculation. 
The following conclusions were obtained. 

1. Correlative equations of maximum thermal 
stress, * and Fourier number, * q . . . .  were proposed (5"max, 
using temperature correlations of thermal properties. 

�9 and * 2. For  the rapid cooling test, ~m~ Tlmax were 
affected by the temperature dependence of thermal 
conductivity and diffusivity. The former dependence 
was more predominant than the latter. 

3. The (~*ax at rapid heating decreased approxim- 
ately by one-half, independently of temperature cor- 
relations, compared with that at rapid cooling. 

Equation A1 can be arranged, using 8F = ~c*ST 
to give 

8/St[0F/8~] = (l/K*) [SF/Srh] 

. .  8 / ~ [ ~ ; * ( 8 F / 8 ~ ) ]  = 8F/~qi (as) 

Substituting Equation A6 into Equation A7, we 
have 

F = T + ( 1 / 2 ) B T  2 (Aga) 

or  

T = ( l /B)[1 4- (1 + 2 B F )  1/2] (A9b) 

Because T is always positive, the above equation is 
also given by 

T = (I/B)E1 + (1 + 2BF)U2J  (alO) 
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Substituting Equation A2 into Equation A9a gives 

F = 0 at qi = 0 (All)  

Using (1/K*)[OF/O~] = 0  from Equation A3 and 
OF = ~*0T from Equation A7 yields 

OF/O~ = 0 a t e = 0  (A12) 

The following equation was then obtained from Equa- 
tion A4, using factor F 

• OF/O~ = ~i(T - 1)tr (a13) 

The following equation is introduced into the above 
equation 

Ff = T - 1 = ( l /B)[1  + (1 + 2BF) 1 / a ] - I  

(a14) 

The boundary condition may be stated 

+_ OF/O~ = [3iFf[~*/X*] a t ~  = 1 (A15) 

Therefore, the rearranged heat equation and  condi- 
tions are as follows 

O/O~[~c*(OF/O~)] = OF/Oq~ (a16) 

F = 0 at rh = 0 (A17) 

8F/O~ = 0 at ~ = 0 (A18) 

+_aF/O~ = J3,Ff[~c*/X*] at ~ = 1 (A19) 

in which Ff = 1/B[1 + (1 + 2BF) l/z] - 1. 

References 
1. M. TAKATSU,  T. NISHIKAWA and Y. MIZUTANI,  Kagaku 

Kougaku Ronbunshu 19 (1993) 633. 
2. T. NISHIKAWA,  T. GAO, M. HIBI, M. TAKATSU and M. 

OGAWA, J. Mater. Sci. 29 (1994) 213. 
3. T .R .  GOODMAN,  J. Heat Transfer 83 (1961) 83. 
4. Y. OHNO and K. ISODA, "Suuchi keisan handbook"  (Ohm 

Sha, Tokyo, 1988) p. 119. 
5. S. P. T I M O S H E N K O  and J. N. GOODIER,  "Theory of 

elasticity" (McGraw-Hilt, New York, 1970) 
6. S .S .  MANSON and R. W. SMITH, Trans. A S M E  78 (1956) 

533. 
7. W. P. ROGERS,  A. F. EMERY, R. C. BRADT and A. S. 

KOBAYASHI,  J. Am. Ceram. Soc. 70 (1987) 406. 
8. K, SATYMURTHY,  J. P. SINGH, D. P. H. HASSELMAN 

and M. P. KAMAT, ibid. 63 (1980) 363. 
9. T. K O I Z U M I  and C. TAN1WAKI,  Trans. J S M E  A3I (1965) 

221. 

Received 2 March 1994 
and accepted 28 April 1995 

5019 


